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MOLECULAR MECHANICS WITH AN ARRAY PROCESSOR

Peter H Berens and Kent R Wilson

Department of Chemistry A
University of California, San Diego |
La Jolla. California 92093

ABSTRACT

Computer simulation of the mechanics of molecular systems i
is a popular and powerful method for understanding chemical
processes The complexity of modeled chemical systems has 4
advanced from hard spheres and rare gases to hiqud solutions and
biomolecules Such simulations are computationally intensive and
thus are limited by the speed of available computers. This paper
describes the use of specialized hardware, a high speed floating
point array processor (AP), to dramatically speed up molecular
mechanics, in other words molecular dynamics, Monte Carlo, and
energy minimization calculations Although the array processor is
a cost effective solution for computationally intensive probiems in i
terms of hardware (full-time AP usage is equivalen! to two to eight
hours per day of Cray-1 time), its full speed comes at the expense
of programming in a relatively difficult parallel assembly language.
Since the architecture of the machine is dramatically different
from conventional computers and utilizing its fast speed necessi-
tates using this architecture on the assembly language level, the
proper design and implementation of algorithms is critical. The
molecular mechanics software design discussed here, consisting of
12000 lines of C and 7000 lines of AP assembly language code, is
quite genera! and has been used to study systems ranging from
rare gases to biomolecules This implementation yields eflective
speeds approximately thirty-five times faster than & dedicated DEC
VAX 11/780 compuler with floating point accelerator and optimized
VMs Fortran, thus allowing simulations to be run in a week and a
half on the AP which would require a year of dedicated vAXx time.
The flexibility of the UNX operating system. whose source code is
accessible and can be modified to optimize performance, com-
bined with the modern features of the C language, have made this
implementation muck easier, by providing a convenient and power-
ful environment in which to imbed the hand-coded AP assembly ,_40ce¢_§i‘55)~:
n ron
Vi

language modules. Applications to date range from the molecular [ Arrs
dynamic calculation of infrared, Raman, and electronic spectrain ; - - . | g
gas and liquid solutions to the celculation of thermodynamic quan ; ;. ..~ -
tities for water and the gimulation of the molecular dynamics of Tl
solution reactions and of polypeptides.

Submitted to J. Comp Chem., July 1882.




MOLECULAR MECHANICS WITH AN ARRAY PROCESSOR

Peter H Berens and Kent R. Wilson

Department of Chemistry
University of California, San Diego
La Jolla, California $2093

1. INTRODUCTION

-In recent years molecular mechanics, the computer simulation of molecu-
lar systems using molecular dynamics, Monte Carlo, and energy minimization,
has eme-ged as a powerful tool for investigating and understanding chemical
properties and processes,, While straightforward in principle. these techniques
can be unusually demanding computationally and thus the size and complexity
of systemns which can feasibly he simulated is determined by the speed and avai-
lability of computer hardware)In this paper we discuss a particular solution to
the computational needs of molecular mechanics, the use of specialized
hardware, a high speed array processor, in our case a Floating Point Systegas.
Inc. AP-1203{ whose use we pioneered afler purchasing serial number two.’In
other papers!:€ we have aiso discussed an alternative sclution. the division of the
problem among an array of different processors operating ir parallel. Yet a
third solutioni®is to use a vector processing machine such as a Cray-1. We will
focus here primarily on molecular dynamics within the array pr\'%tessor rogram
package for molecular mechanics we have developed, called Wewton', whose
e6nception is described in earlier papers.} Z'In section Il we examine the archi-
tecture of the AR120B, as this is necessary to understand how to efficiently use
the machine »In section II1 we lay out the specifics of the structure of the pro-
gram package we have developed for molecular dynamics. Finally, in section IV
we present the results, analyze potential array processor improvements, and

int out the advantages and importance of the environment in terms of
Enguage and operating systema

Classical molecular dynamirs? is the simulation of systems by the numeri-
cal integration of, for example, Newton's Second Law, to obtain particle trajec-
tories, i.e. coordinates and monlenta as functions of time, and then the compu-
tation of physical properties as averages over these trajectories. In the Monte
Carlo technique, particles are moved artificially as the result of random number
generation, rather than dynamically. The Monte Carlo technique is less general
than molecular dynamics in that it is appropriate for the calculation of proper-
ties which depend upon averages over coordinates, but not for properties which
are explicitly time dependent. These fields are reviewed by Alder,® Wood and
Erpenbeck,® Valleau and Whittington,? McDonald,® Binder ? and Wood!© and are
the subject of a workshop.!! Energy minimization}®1% jg the search for the
minimum energy of the system as a function of particle coordinates.

Early liquid state molecular dynamic simulation'® involved hard sphere
atorns. later, soft potentials, eg. LennardJones, were introduced 7?8

The authars provided pholotypeset copy for this paper uNing IEFER; T | BQN | TROPT -sme 0D TIOP
WX is & trademark of Bel Laboratories
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Computer simulation becarne & tool for testing approximate theories for atomic
liquids !® More recently, with increasingly powerful software and faster
hardware, attention has focused on more complex molecular systems, ranging
from water!? to proteins®® and nucleic acids

Arrey processors can bring much greater computer power Lo bear on chem-
ical problems than was previously available 1.2.21.&2 However, their use carries
the serious disadvantage that, at least up to the present. their maximum
efliciency has only been gained by assembly language programming, as an
eflicient compiler for such unusual architecture is not yet available. Thus the
development of efficient and general purpose software for array processors is
very important as, in the long run software costs will usually domina‘e
hardware cos's even in a University environment. We thus hope that the tech-
niques discussed here which we have used 1n the developmen! of Newton, our
tool for molecular mechanics on an array processor, will prove useful to others
using array processors for molecular mechanics as well as for other classes of
problems.

II. ARRAY PROCESSOR

There are three ways to build faster computer hardware. The first is to
increase the speed of the logical elements themselves, the second is to horizon-
tally spread out the calculation among many parallel elements all working at
once, and the third is to vertically spread out the steps of the calculation in
time along a pipeline, so that many successive different calculations cap trickle
down the pipeline together Arrays of processorsl 2 are an example of highly
paralle] architecture and supercomputers such as the Cray-1 and Cyber 205
make extensive use of pipelines (as well as parallelism).

The Floating Point Systems A™1203 {AP) array processor is & special purpose
computer, which combines all three approaches, logic speed, parallelism. and
pipelining. but pushes none of these to its extreme limit. It is designed for very
fast processing of fioating point arithmetic 2 In comparison. logical instructions
are much slower and more cumbersome. It is not an array of processors as
many infer from the name, but a single parallel and pipelined processor whose
architecture is easily exploited for array type operations The maximurmn fioating
gint rate is 12 million operations per second (12 megaflops) This speed puts

e AP in the same computational class as many larger main frame computers,
as indicated in Table ] Because it is a peripheral processor, the AP requires a
host computer to initiate data and program transfers to and from it. The nature
of the host interface as well as the host operating systers are thus important
factors. as will be discussed below.

Why Use an Array Processor?

The major reason that the use of an array processor is atiractive is its cost
eflectiveness This is shown in Table I from the work of Bucy and Senne® as is
described in detail by Karplus and Cohen.25 Columns one and two show comput-
ers that have been commonly used in scientific numerica! applications and their
theoretical speed, as measured in millions of floating point operations per
second {megafiops). Columns three and four show the performance in terms of
time and achieved megaflops for a sample application Columns five and six
show the motivating economic reason for using the AR1208. It has the lowest cost
gr achieved megefiop and one of the lowest overall installatior. costs. However

e last column shows where the real price is paid. The AP-1202 has a substan-
tially higher program development time. in addition to a cosily learning curve as
users must become familiar with its unusua! and challenging paralle! assembly
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Tahle I Comrparison of Processor Cos./Performance {or Demodulation Problex.

Tune Appraximate selation Satiware
Maximum pe Cast Costs Developmem:
Theorezical Itersuon Achieved (Dolare (M. bons Time
_Mac¥ine Megaflops {msec)  Megafops pe> Flop) of Dolers) (Meanr-moaihs)
Cray-1 80-140 21 384 o2 8 05
S.ar-100 2550 4.9 18.8 0.48 8 20
Miac IV 40-80 6.0 9.1 1.10 10 30
AP-1203 812 13.9 59 0.08 0.15 80
CDC 7800 615 25.0 a3 0.81 3 1.1
IBM 370-188 24 94 0 0.87 2.30 2 1.0
CDC 8600 1-3 136 0 o83 1.58 1 1.0
VAX-11/780 05 110 0.26 0.77 0.2 05
PDP-11/70 0.2 870 0 0.08 1.67 0.15 12
language.
Programming Techniques

Three methods of programum.ing the array processor are available The leve!
highest in abstraction, but slowest in speed, is the Fortran complier. Fortran is
a language familiar to most computational cherists, but unfortunately no exist-
ing Fortran compiler®28 for the AP-1203 generates eflicient or compact code.
Compiled code is thus lengthy (one can quickly consume more program source
memory than is available for the AP-1208) and therefore necessarily slow, since
the machine is synchronous. Most applications would thus require the storage of
instructions in main data memory which is costly not only due to the loss of
main data memory (two locations per each instruction stored) but also in the
overhead of the overlaying process both in terms of the bookkeeping required
and the actual transfer of the instructions to and from main data memory as the
overlaying is done. The improvement in program speed and performance of For-
tran in the AR-1208 over a VAX 11/780 can be as little as a factor of two or three 2!
This degrades even further if many date transfers to and from the host or much
loading of program source memory from main data memory is required.

The second level of usage is to vectorize the algorithm into a form in which
the problem can be solved by a series of calls to canned vector routines written
in assembly language by Floating Point Systems (FPS). This can be an improve-
ment over the Fortran compiler, but since the code for the individual vector
operations cannot be overlapped, the full advantage cannot be taken of the
speed of the AP. Two modes of operation are possible, one in which the canned
routines are called on an individual basis from the host C or Fortran program
and the other where these calls are linked together in a rudimentary higher
level language, know as the vector function chainer. The vector function pro-
gram is then compiled into AP assembly code, and executes the set of opera-
tions as a group. It is vitally important to use the vector function chainer to
string these operations togelher so thal the overhead involved in loading and
starting the A;ei.s only paid once. However, the vector function chainer gen-
erates even worse code than the Fortran compiler, so any loops coded in the
vector function program can also degrade performance. A typical increase in
speed over that of a VAX t1/780 is three to twenty using this approach, as it is very
dependent on how well the particular canned functions encompass the problem
being solved. Molecular mechanics calculations tend to be at the low end of this
range.

The third level of usage, needed to realize the full polential of the AP, is to
hand-code commonly used algorithms in AR120B assembly language. This
presents a problem to most computational chemists in that it may require skills
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unfarmiliar to them. In order to investigate the reason for the necessity and
inherent difficulty of assembly language coding. & knowledge of the architecture
of the AP is helpful.

Architecture

The array processor is & parallel and pipelined machine 2° A paralle! com-
puter is one that can perform more than one operation in 2 single instruction
The array processor consists of several independent memories and arithmetic
units. as shown in Fig. 1, all of which can be addressed or initiated withun a sin-
gle instruction of the AP-1208 There are three types of memory. Program
source memory, which is 64 bits wide, is used to store assembly language
instructions Data is not stored interm:xed with instructions. as in most corm-
puters, but resides primariy in main data memory (38 bils wide) which 1s avall-
able 1n two speeds, known as "fast” and "slow” memory Data can also be stored
in table memory which can consist of both Read Only Memory (RoM) and Random
Access Memory (RAM) In our configuration we have 84 K words of main data
memory, €K words of table ROM, 4 K words of writable table memory, and 1.5 K
words of program source memory. The actual hardware of the machine can sup-
port to 4 K of program source, 4 K of writable table memory, and 52 K of
main data memory {(however, only one indimdual 64 K bank can be accessed at
any one time). In addition there are two banks, DPX and DPY, of thirty two (38 bit)
registers called data pads (only eight of which can be accessed at a time) for the
storage of intermediate results. Addresses (pointers) and integer parameters
are stored in sixteen (16 bit) integer registers, known as S pads In addition to
the memories there are two separate floating point arithmetic processors, an
adder and a multiplier. The floating adder is capable of a variety of operations
such as addition. subtraction, logical and, as well as logical or. There is also an
integer arithmetic unit which can be initiated every instruction and whose result
is available for use in the instruction in which it was initiated.

Fig 2 shows the pipeline® nature of the AP-1208. The fioating multipher of
the AP is a three stage pipeline, and thus a multiply operation started in one
instruction will take a minimum of three instructions to complete A new multi-
ply. however, can be initiated at every instruction and each initiation causes the
preceding operations to be pushed through the stages of the pipeline. If the
preceding operations are not pushed, the results stay in the pipeline until
pushed out later by initiating other multiplies. The floating adder is a two stage
plpeline with similar properties to the multiplier. The memory units are also
pipelined in the sense that a memory fetch initiated in one instruction does not
complete and cannot be used until three (or two, in the case of table memory)
instructions later.

Program branching can only be performed, with a few exceptions, on the
output of either the floating adder or the integer arithmetic unit. For example,
to branch if a particular ficating number is negative, the number must first be
generated in the adder, which requires two instructions On the third instruction
the result is available from the adder and on the fourth, and not before, the
result may be tested and branched upon. This is the principle reason that cal-
culations which require a significant amount of logic do not perform as well on
the AR-1208B Branching based on integer operations is not as sjow because the
result {s available in the instruction {n which the operation is initiated and may
thus be tested in the following instruction In either case, building logic
efliciently into an AP-1208 assembly language program can be quite cumbersome

Another important feature of the architecture of the AR1203 is that each
separate memory or register unit can have one read or write (in the case of
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registers like DPX or DPY both a read and a write) initiated per instruction Thus
the placement of data among the various memories is extremely important in
that the more spread out the data the more data can be accessed in an 1ndivi-
dual instruction. For this reason it is unportant to have writable tabie memory
in addition to main date memory The difficulty encountered with the use of
writable table memory is that changing date stored in that memory is a multiple
instruction process and very slow in comparison with writing into main data
memory Whether it is important to have the fast rather than the slow main
deta memory is highly dependent or the algorithm being coded For molecular
mechanics code, which is usually computation rather than memory bound, the
slow memory seems adequa'e

As can be seenin Fig 3, all these unuts interconnect through @ complicated
data pad bus structure. It is contention for the data pad bus. which can contain
only one value per instruction, that is the most common difficulty in AP assem-
bly language programming Thus eflicient programming of the A®-32(3 involves
exploiting the parallel nature of the components of the AP and the inner connec-
tivity of the data paths to give the maximum throughput This means that the
manner in which a particular part of an algonthm is coded in the early part of
the code has long reaching effects in the later stages of coding the algorithm In
many instances il is necessary to code an algorithm in more than one way and
then examnine which scheme can be made the most efficient This can require a
high degree of patience and persistence

The AR-1208 interfaces to the host computer (in our case a DEC VAX 11/750)
through two (or possibly three) channels. as shown in Fig. 3. The virtual front
pene! 1s used by the host to control the An-120B It does not exis! in reaity but 1s
a set of registers (in our case on the VAX UNIBUS) which can be examined and set
by the host computer. The UNX device driver for the AP uses these registers to
start and stop the AP, to examine and deposit into memories and registers, and
to initiate Direct Memory Accesses {DMA's) over the UNBUS Any date menipula-
tion done using the front panel is necessarily very slow. Thus, data ant program
instructions are normally transferred between the host and AP via the DMA pro-
cess which can occur at approximately a megabyte per second Due to the
difference in word lengths between the usual host floating point representation
{32 bits) and the AP representation (38 bits), floating point numbers are con-
verted "on-the-fly” during the DMA process by the AP's interface hardware To
preserve the full precision of the AP's representation requires using the much
glower front panel or DMA'ing out the data in successive passes Preserving full
precision is important if numbers are to later be reloaded back into the AP and
the calculation continued, as the result will not be the same as would be
obtained by doing the same uninterrupted calculation in the AP if the numbers
are rounded to 32 bits. The AP has a much larger dynamic range (107'= to
10°15%) than the usual host representation (107 to 10°%) and the only way in
which these larger floating point numbers can be extracted from the AP-1203
preserving the full 38 bits of precision is to use the front panel However, if the
floating point numbers are within range of the host’'s floating point representa-
tion. precision can be preserved by DMA'ing out the data in multiple passes. 30
First the actual data is Dia'ed out, undergoing convergent rounding te 32 bits.
Next the data is DMA'ed back to the AP and subtracted from its original value in
the AP. The result of this subtraction, the remainder, is then DiA'ed to the host.
These two arrays (the rounded data and remainder) can then be used to recon-
struct the original value in the AP by DMA’'ing them into the AP separately and
adding them together in the AP. This requires the allocation of scratch areas in
the AP's memory.
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The DMA channe! also is a bottleneck when large volumes of data are to be
transferred to and from the host computer The AP can use approximately BO%
of the bandwidth of the UNBUS A typical transfer rate is approximately 0 8 VB
(megabytes per second). Particularly operating systemn dependent is the sever-
ity of overhead paid for initiating each transfer On VAX's, the poor hardware
design of the UNBUS adapter also lowers the bandwidth However, the
throughput can be maximized by the using the asynchronous capability of the
DiA chanpel A third optiona! DMA channel. know as an IOP, operates in 8 manner
similar to the standard DMa channe! except that it has less geperal format
conversion capabilities and lacks a sophisticated handshaking protocol which
may make it inadequate for some applicetions

Another important archilectural feature of the AP-1203 1s that ali main dzta
memory locations are 38 bits and designed to accornmodate a single floating
point number. While it is e quite possible {and easy) to store a single 16 bt
integer 1n each 3B bit location. in many instances it would be more eflicient to
pack more than one integer in each floating point word. This would provide sav-
ings not only in the amount of memory required but also in execution ime by
cutting down the nurmnber of memory accesses required to retrieve the da'e
Although the 38 bit word. as shown in Fig. 4, consists of three different fields. a
18 bit low mantissa, a 12 bit high mantissa, and a 10 bit expopent, not all of
these bits are accessible to an AP-1208 assermnbly language program. All 16 bits of
the low mantissa and all 10 bits of the exponent can be placed into the S pad
registers, but only B of the 12 bits of the high mantissa (the so-called table
lookup bits) can be accessed by the A™1203 program. Furthermore, there is no
way to write these integers back into the packed word from an AP program and
these packed integers cannot be loaded by the DMA channe! into the AP-1203, but
must be loaded using the front panel which can examine and deposit all the bits
of the low mantissa, high mantissa and exponent separately.

1. NEWTON

Our tool for molecular mechanics, Newton, consists of a variety of hardware
processors and a generalized software package which will be described in thus
section The software portion of Newton consists of 12000 lines of C code and
7000 hnes of AP code It is designed to be a modular and generalized approach,
applicable to systems from rare gases and diatomics to polypeptides, proteins
and nucleic acids in solution While Newton can be used for Monte Carlo and
energy minimization, its major use to date has been for molecular dynamics
based calculations, and it is these we will describe in more detail The array
processor, as shown in Fig 3, is connected to & VAX 11/750 as the host processor
The second DA port can be connected to a PDP 11/3¢ which serves as the host to a
three dimensional graphical display system, an Evans and Sutherland Picture
System Al four of these processors can be activated simultaneously to allow
the computation of molecular dynamics {and derived properties such as spectra
and thermodynamics) and the real time display of the atomic motions or
derived properties on the Picture System as they are calculated.

We know of four other applications of aspects of molecular mechanics which
bave been made using array processors. Pottle, Scheraga and co-workersS!
describe a package for energy minimization of proteins Although the problems
of force evaluation are similar, the approaches chosen are different Newton is
pot confined to any one set of potential surfaces, such as the electrostatic plus
Lennard-Jones potential surfaces used by Pottle. but is capable of implementing
essentially arbitrary potential surfaces, as will be seen below However, we have
also paid the price for this generality. While their inner loop code operates
using 80% of the theoretical maximumn floating point speed of the array

- : M T e . R




FLOATING POINT REPRESENTATION

10 BITS 12 8ITS 16 BITS
HIGH LOW
EXPONENT MANTISSA MANTISSA
10 BITS I\ 8 BITS SN\ 16 BITS
-V N AVAE
LDSPE LDSPT LOSPT

Figure 4. AP-1203 floating point representation A main data memory word is
divided into three parts: a 16 bit low mantissa field, a 12 bit high mantissa and a
10 bit exponent Below are shown the various AP instructions that can be used to
read and treat these fields as three variable length integers Note that some of
the bits are inaccessible in this manner.
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processor. we average somewhat less than 50% This is primanly due to the
extensive logic and indexing necessary to handle the general case Much of ths
code is overlapped with the actual floating point computation {since the logic
consists of integer operations) With & conventional computer, the integer
operations would have to be done in serial mith the floating point operations
Thus group has also implemented molecular dynamics calculations for water3?
and Monte Carlo calculations for hquid ammonia3® and for Lbqwd methane ™ In
addition. Andersen and Swope¥.3% have implemented molecular dynamics code
for water and atomic solutes in water, and Berne and co-workers3® have carried
out Monte Carlo calculations. both on an A™1203 Dammkoehler and co-workers3?
are implementing molecular mechanics code on muwuple €538 array proces-
sors Also of related interest are the crystaliographic work of Furey and co-
workers3 and the simulations of plasma dynamics by the UCLA group #° both on
FPS A®1208's
Newton contains seven separate host programs which operate cooperative!y
as shown in Fig. 5. The first of these is APCOM which is an interactive command
interpreter It allows the user to type in varjous commands, validates the com-
mands and. where appropriate, instructs the next link in the chain APRUN, to
rform the operation requested APRUN is the program responsible for runnirg
e AP, and its only function is starting and stopping the AP and emptying the
data collection buffers while the AP is running It uses two other prograrms
APLOAD to load the AP umtially with constants and parameters, and A”A3.ES to
calculate the force lookup tables for the intermolecular interactions whenever a
new system is simulated DRAW is an optional process that can be used to display
the dynamics on the Picture System as they are being calculated on the AP
MOVIE can be used to display the previously calculated dynamics of a system
using coordinates saved in & file by APRUN It also allows color mowvies to be made
from these files. DODATA is a program which allows the computation in back-
ground mode of a series of runs to collect data over an ensemble of initial start-
ing configurations and momenta It is interruptible to allow users to carry out
program testing and development and systems tasks such as disk backup
without interfering with the runs

All of the actual code involved in molecular dynamics calculation has been
written in AR-120B assembly language and split into independent modules, as
shown in Fig 6. Other AP modules not described here provide for other types of
molecular mechanics and for the calculation of phenomena derived from molec-
ular dynamics, such as infrared 41.42 Raman, and electronic4.47 spectra and
thermodynamic quantities 48 The modules are then linked together using a sim-
ple vector function chainer program that Joops over the routines to perform the
pumber of integration steps requested Data is buffered inside the AP-3203 and
DiA'ed out asynchronously when the buffers are filled, while the AP is running
The buffering mechanism will be examined laler in more detail.

The remainder of this section concentrates on our approach to molecular
mechanice. The implementation of molecular dynamics consists of two basic
steps. force evaluation followed by numerica! integration. It is these two func-
tions which are performed by the AP modules shown in Fig 8 and the methodol-
ogy behind their operation and design which will be discussed. We examine the
types of lists and indices needed for a general purpose molecular mechanics
package We also examine various types of boundary conditions which are
importiant in many applications, especially those with long range forces.
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. SOFT WALL
IR ey VAR CUBIC PZRIODIC
CALCULATOR TRUN OCT PERIODIC

TWO BODY FORCE
CALCULATOR

THREE BODY FORCE
CALCULATOR

FOUR BODY FORCE
CALCULATOR

INTEGRATOR

NONBONDED FORCES

BOND STRETCHING

BOND ANGLE BENDING
AND CROSS TERMS

TORSIONAL FORCES

MODIFIED VERLET

DATA COLLECTION

WRITE TO DISK

LN

Figure 8. Newton AP modules for molecular dynamics. The various hand-coded
AP-1208 assembly language modules are shown in the loop in which they are exe-
cuted The entire loop is executed in the AP itsel! with no intervention requred
from the host. Briefl descriptions of the modules are giver on the right.




How to Describe an Alom

In addition to initial coordinates and momente, other information is needed
to create the wide variety of lists necessary to loock up masses. positions. and
forces among atoms These can all be derived from a basic set of informatier.

struct ]
char fiags,
char type.
int parem,
int parem;
| parts,

where the above is the C language4® template for a structure describing the
atom parts The first item in the structure is the atom flags These flags carn be
used to enable or disable particular features For example one flag bit can be
eet to fix the atom 1n space so that it cannot move (although it will still exert
forces on neighboring etoms). Another is used to specify that the atom 15 the
start of a molecule. If this flag is set then the param part contains the tota!
number of atoms that follow which are in the same molecule Another flag b.t
can be set to indicate that the alom is part of a ring structure. in this case the
param element contains the other parent of this atom necessary to complete
the ring structure. Another flag is used to specify if the atom is to be drawn 1n
the picture display or not Currently these four flags are the only ones used,
although B such flags are possibi= for future uses.

Another part of the structure is the type of the atom, a number betweer C
and 255 For example for water the atom types are hydrogen and oxygen Io
organic molecules or ionic solutions it 1s often necessary Lo disinguish betweern
different types of multivalent species (such as carbon) or different 1onic states
and thus each different chemical state of a particular elements will have a
different fype number.

The parent element specifies to which atom the present atom is connected
Using this tree linking mechanism the entire bond structure of any non-rirg
molecule can be determined With the eddition of the ring flag and the extra
hnk provided by the poram word, any reasonable chemical structure can be
handled

The atom flag, type and parent are stored as the exponent. high mantissa
and low mantissa, respectively, of an AP-1208 writable teble memory location
The atom param word occupies the low mantissa of a main data memory word
whose other fields are currently unused.

Solely from this simple information all the other Lists needed by the AP-1203
modules described below can be generated. The atom perts, alomic coord:-
pates. and momenta are the only pieces of information kept in Newlon fill files
which are used to start or reload a Newton run.

Boundary Conditions
Two of the AP modules (the intermolecular force evaluater and the integra-
tor) depend on the type of boundary conditions being used Currently we have
g::grams that allow the use of four types of boundary condilions. soft walls,
d walls, minimum image cubic periodic, and minirmum image truncate:l
octahedral periodic. 50 Other possible boundary schemes” include spherical ard
periodic boundary conditions using Ewald sums.
Cubic soft walls are the simplest. No imaging is done, and thus particles
fee! only the forces of the other particles in the cube. When e particle
approaches a wall, a sofl spring force pushes the particle back into the cube
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i Thus type of boundary condition is useful for studving small clusters or droplets

‘ of particles The disadvantage is that a high fraction of the particles can be on

| the surface of the droplet or cluster and, 1n many situations, these surface

: eflects can be important Consequently, & larger pumber of particles are
needed to study bulk phenomena In addition collisions with & wall can give a
molecule a large, artificial, angular momentum as it is shoved back toward the
cluster

Hard walls are specularly reflecting and cause problems wmith integration as
the velocity of the particle normal to the wall reverses itself ip one integratior
tume step Such a discontinuous change can cause integration algorithms to
"blow up”. This can be avoided by altering the algorithm so as to alter the past
tume history of the particle {as far back as necessitated by the algorithm) when ]
it strikes the wall to become that of a particle haning entered the box with the ‘
reversed normal velocity. The problems with surface effects still rernain

Periodic boundary conditions? are commonly used to reduce surface effects
for the simulation of bulk matter The sumplest 1s a cubic minimum image In
this scheme the system of particles resides in @& central cube which 1s sur-
rounded by exact replicas of this central cube on all sides, edges. and corners
Particles interact only with the closest image of any other particle In all cubic
periodic boundary algorithms, when a particle leaves the central box 1t 1s
replaced by one of its images entering from the opposite side

| A truncated octahedral boundary condition is similar except that the uat
! cell is a truncaled octahedron which more closely resembles & sphere This is
| important for minimum image boundary conditions as the forces must be
smoothly feathered to zero at the radius of the inscribed sphere of the unit cell
to avoid abrupt changes in force and loss of energy conservation. For a cube,
‘t 48% of the volume of the cube lies outside the inscribed sphere in the corners of
! the cube and particles in this volurne dop't contribute to the forces on the test
atom For the truncated octahedral geometry. only 4.5% of the unit cell volume
lies outside the inscribed sphere, and thus more of the dynamics calculation is
effectively used. In addition the excluded volume is more evenly distributed in
angle than for the cube, and the isotropy of space is thus less distorted There
:‘ exists an easy way™ to code algorithms to implement the truncated octahedron
: The number of possible space filling solid tessellations is small Out of the regu-
lar and Archimedean polyhedra there are only five which are space filling: the
cube. triangular prism. hexagonal prism, rhombic dodecahedron, and truncated
octahedron,25! and thus the natural alternative to the truncated octahedron
would be the rhombic dodecahedron

Intermolecular Force Evaluation

The first module of AP code is the intermolecular force evaluater, used to
compute nonbonded forces, i e those between aloms on different molecules, or
separated by so many bonds in a single molecule as to be considered indepen-
dent As pointed out above, it comes at present in four flavors soft and hard
walls, cubic periodic, and truncated octahedral periodic boundary conditions.
We approximate all intermolecular forces as purely pairwise additive, thus

V = -g~y(7"). (1)

in which ryis the distance between the i th and § th atorns The potential func-
tion V{ry) depends solely on the chemical type of the atoms involved
Currently. intermolecular forces are evaluated by looping over all the possible
pairs of atomns in the sysiem simultaneous!y calculating the force for both
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members of the pair. This requres logic that allows the intermolecular force
evaluater to skip over all the pairs of atoms whose forces are to be calculated by
one of the other bonded force routines.

To skip over the appropriate bonded interactions the parent (and. o the
ring fag is set, the param word) is used to determine bonding up to and includ-
ing four body interactions which causes the intermolecular force evaluater to
skip over these interactions While this involves extensive integer arithmetic
and logic, the overhead is inconsequential as it is overlapped completely with
the code to do the minimurmr imaging for the periodic boundary conditions Ear-
lier experimenlal versions of the intermolecular module did not carry out th:=
logic and instead calculated intermolecular forces for all pairs of atoms whethcr
bonded or not. The bonded force evaluaters then simply subtracted out these
erroneous intermolecular forces when they calculated the intramoiecular
forces. This addition and subtraction caused disastrous results due to numer;-
cal round off caused by adding the relatively small intramolecuar forces to the
large erroneous intermolecular forces that had not yet been subtracted out

Andersen™ has pointed out that when using a smoothung functior. for poten-
tial energy, the correct force evalustion 1nvolves calculating both the force and
potential energy. as can be seen from,

K(r) = V(r) S(r) (2)

) vy 5y iy asie)] ®

dr

where V,(r) is the V(r) potential smoothed Lo zero by the smoothing functicr.
S(r).

Currently all intermolecular forces are calculated by table look up. This
involves allocating most of main data memory to the force look up tables Linear
interpolation of these grid points is used to give the actual forces. At least in
principle, as has been pointed out by Andersen and co-workers 3 this scheme
bas a flaw when used with the Verlet integration algorithm due to the infinite
second derivative of the force at the boundary between the linear segments
Andersen uses a better scheme employing & polynomial to fit fixed length seg-
ments of the potential curve with each polynomial joining smoothly and continu-
ously out to several derivatives at the end points of the adjoining segments. This
involves less data storage to calculate the intermolecular forces as only the
polynomial coefficients need be stored In addition, since polynomials are used,
the potential energy as well as the forces can be calculated with Little extra
effort from the same set of coeflicients.

For large systems, most of the computational time is spent in intermolecu-
lar force evaluation, since when done on a pairwise basis for the entire system of
N eatoms it becomes a calculation proportional to N% while the bonded,
intramolecular calculations only scale as N. A possible alternative is to use
neighbor lists353 which are only updated after several time steps so that only
the atoms which are close to the atom in question are scanned to calculate the
intermolecular forces. However, neighbor lists create a considerable storage
problem in that each atom must have a list of all the other atoms which are near
ft. For arelatively large system this list could easily exceed the amount of main
data memory available. For small systems, the effort involved in updating and
indexing the interactions from such a list may exceed the effort to de all the
pair-wise calculations.

F =
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Two Body Module

The two body module calculates all simple bonded forces in diatomics such
as CO and Ny The force between two bonded atoms ¢ and § wmith coordinates r,
and r,. respectively. is ]

y‘=_r,=_v‘v=v,v=-g£¥lv‘rv. (4)

in which F; and F; are the vector forces on the i th and j th atoms. respectively,
which are seperated by the distance r;=|r ~r;| ¥ is the gradient with
respect to the Cartesian coordinates of atom § as expressed in Eq (A!) of the

Appendix
The two body program uses a list as shown in Fig. 7. The low mantissz and

exponent of the first word in the List are used to index the two atoms involved
The atom pumber of the first atomn (stored in the low mantissa) is subtractled 1
from the atom number of the second before it is stored in the exponent field
Thus allows us to use the fields, such as the exponent, to index an atom number ‘
which 1n principle can be much larger in magnitude than the bit field could nor !
mally handie. Since atoms that are bonded to each other tend also to be close 4
to one another, the atom numbers are very close in magnitude, and thus the
smaller bil fields are big enough to allow this relative indexing of atoms Code
common to all two body force evaluations is used to fetch the atomic coordi-
nates and calculate the internuclear vector. The potential index, or switch
ﬁameter, is then used to pick among a variety of force calculators (such as

monic, Morse, etc.) that will calculate, given the internuclear vector, the
scalar force along the bond The low mantissa of the second word in the st is
the address of the force constants for the force evaluator to use. In this way. for 1
example, one routine can be used to evaluate all harmonic forces. The common
mein line code then decomposes the force along the space fixed z, y. and ¢
axes. This module is only used for diatomics. For more complex molecules it is
more efficient to have the three body module also calculate the two body forces

P

Three Body Module

Three body interactions are those whose calculation depends on the coordi-
nates of three particles, r;. r;, and r, . An example of this is a force due to bond
angle bending which requires the three atoms involved to be specified in order
to calculate the bond angle. 9. The three body module uses a List similar to the
two body module, as shown in Fig 7. The low mantissa of the first word contains
the index to the middle atom in the three body interaction The exponents of
the first and second words contain the atom pumbers of the other two atoms
after subtracting the atom number of the middle atom. The high mantissa of the
first word selects which three body force evaluation routine is to be used
Currently we have two such evaluaters, 2 complex one™ for water molecules and
a simpler barmonic one,

V(bry 01y 68) = ko(8r,)t + k (81, )t + kp(69), 6))
which is written in terms of the bond vectors r, and r, where
Ie—ry| ~7rd = |ral-73 (6)
bry = In-r |- = |1 -7§, ()

and 69 = 4—~9°, in which rJ, r§ and ¢° are the equilibrium bond distances and
angles, respectively, of the potential V. The two body part of the potential is
shown in the above expression as it is also calculated in this module as explained
above The waterS force evaluator has various higher order terms among 8r, .

"
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Pigure 7. Format of interaction lists. The top panel shows the format of the two
body interaction list as stored in AP main data memory. The low mantissa of the
first word holds the i th atom number times three (for faster indexing into the
three dimensional arrays). The high mantissa is an B bit integer specifying
which force calculator to use (harmonic, Morse, efc.). The exponent field con-
tains the difference between the jth and ith atom numbers This is dope to
allow more dynamic range in the 10 bit field The second word conteins the
address of the force constant. The switch parameter or potentia’ index is used
to specify which force evaluation routine is to be used for this interaction The
three body list, in the middle panel, is similar except that the middie atom is
used to index the other two. The four body list, as shown in the bottom panel. is
also similar except for an constant offset which is subtraced from the force con-
stant pointer to allow more dynamic range.
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ér,. and 69 in addition to the terms shown in Eq (5). The low mantissa of the
second word contains the address of the force constants {kg. k;. and k) used by
the force evaluators

Common code is provided by the three body module to calculate the two
internuclear vectors and the bond angle belfore caling the appropriate three
body force evaluator. The evaluator returns scalar forces along the two inter-
nuclear vectors and a force associated with the bond angle. and the three body
module resolves these forces into Cartesian forces on the three atoms involved
The forces on the atoms are given by

. . V - 34
F, =-VV= —fv.PV‘r, + %S—V‘ﬁ} = -lv.w d—ﬂ—v‘ﬁ] (8)
= - dv _ dV
!’,-—V,V--[v.VV,r.+V.l’V,r,+ FV,#]—!V.V+V.V—H-V,G] (9)
. dV 44
F, =_V,V=.-fv,vv,rb + ﬁ—v‘ﬂ :—P°V+ E:E"k‘!’}, (10)

where we have used Eqs. (A9) and (A10) of the Appendix to evaluate the chain
rule gradients for the tensor vector product appearing in Egs. (8)-(10). Simi-
larly. using the results of the Appendix, the gradients involving the bond angle ¢
in Eqs (B)-(10) can be expanded 1n terms of gradients involving the bond vectors

e 2and r,,
V8=V, 8V, =V, 9 (:2)
V0=V, 3V, +V,5V,r, = -V,9-V,9 (12)
Vo=V, 8V,r, =V,0. (13)

Since the bond angle can be written in terms of the dot product of the two bond
wveclors,

cosy = =% (14)
TeTh
the terms in Eqs. (11)-(13) can be evaluated as
- -1
'.1’ = ';i—’;o—‘v.COS'l’ . (15)
Using Eqs (14) and (15).
'.cosd = 'l'b'n(rc'rb)-l;.'rb'-('orb) . (16)
'-"b
where
'l(r. f.) =n (17)
and
s
Vlrams) = ;,:‘rc . (18)
Substituting Eqs. (17) and (18) into Eq. (18) yields
r
Teh Dy — '—.."(ro Ty )y
¥V, cosd = = (18)

'l".'

Now, by using Eq. (14) with Eq (18) we have

i
|




4 r,cost
Vocos® = —— - 2o (20)
0'0 L

A similar dervation for the gradient with respect to the other bond vector r,
yields
r 3
¥, coss = = - T (2:)
TaTo "

Rinally. substituting Eqs (20) and (21) into Eq (15) we have

=1 n rocosy a
Vo¥ = sind ‘rurb rk (22)

-1 J r r cosﬂ] -
Vs smﬁ['r.:, - br.z J (25

Thus. using Eqs (B)-(13) and Eqs (22) and (23) the forces can be appropriately
resolved ontc the three atoms involved These results are the same as those
arrived at using the Ebaschevich and Wilsor: g-vector method™ 56 to evaluate the
elements of the B matrix used in normal mode vibrational analysis to relate the
internal and Cartesian coordinates through a Taylor's expansion

Four Body Module

A four body interaction requires the knowledge of the positions of four par-
ticles to calculate the force The two most common examples are torsione!
forces and out-of-plane bending forces 5.5 The four body module for torsiona!
forces uses a list as shown in Fig 7. The stom numbers of the two inner aloms
are stored in the low mantissa field of the first and second words, with the j th
atorn number multiplied by three for indexing convenience The inner atom
index numbers are first subtracted from the closer outer atom nunber and then
stored in the exponent field of the two words The high mantissa of the firs!
word is used to store the potential index value to select a particular torsional
force evaluator with the force constants being indexed by the value in the high
mantissa field of the second word Since a complete memory address cannot be
stored here, the value in the high mentissa of the second word is ap offset to the
base address of the torsional force constants Currently there are three types
of torsional force evaluaters which handle single. double. and triple bonds.

Common code is used to calculate all the internuclear vectors and the tor-
sional angle. A scalar force is returned which is solely dependent on the tor-
sional! angle. This force is then decomposed onto the atoms as follows If we
take & four body inleraction as shown in top half of Fig B. each of the four atoms
€. 5.k, and ! has coordinates represented by the vectors r,.r,. r, andr, If we
now define the bond veclors,

n=R-r, F=n-T. I=0L-n. (24)

and look down the § —& bond, then we have the representation shown in bottom
half of Fig. 8 where r, and r, are the projection of r; and ry into & plane and the
¢ torsional angle is formed between them. We can now write

T =nXn ve = |rel. (25)
n=nXn n=In. (26)
and
cosp = (ri Xrz) (ry Xrs) = h X (2?7
1y Xrz| [y Xy Ta™o




Figure B8 Calculation of torsional angle. The top half of the figure shows the
atoms and vector conventions used in the calculation of the torsional angle. The
bottom hall of the figure shows the projection of the bonds in a plane when
viewed down the center bond
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The force on each atom. using Eqs (A9) and {A10) from the Appendix, 1s giver by

-V V= -V, V¥ = -V (28)
V¥ V= -V VW, -,V = ¥,V + ¥V (28)
“WM V= =WV, - VsV Wy = -V + WV (30)
—W, V= -Vh VW rg= -VaV . (3)

Since the potentials used are solely functions of the torsional angle.
V = V{cosg), (32)

each of the terms in Egqs (28)-13:) can be evaluated as

vV= %ﬁ:—:iilv‘cos;. £=1.23. (33)

However, following the format of Eqs (A¢)-{A7) of the Appendix, we can expand
the gradients of cosg 1n terms of the projections r, and r, to give

Vecosy = Vgcosy Virg + WocosgWer, . =128 (34)
From Eqs (20) and (21) we know the gradients of the torsional angle are given
by

r, I cosg _
V.cos¢g = - K
. ¥ Tt r.z (
r cosg .
Wocosg = —°2—- 2 . (36}
r.fb f°

Using Eqs (35) and (36) with the veclor tensor products of BEq {34) which are
given by Egs. (A13)-{A15) of the Appendix, we have

- [ | £ r.COS?J
'IV - rz x lr.'b - r.! J (37)
_[n rycos¢) r. r,cosy )
ng = [T.T. r.g J X r + [f‘.f. r.! J X rs (35)
r. _ rycosy)
vV = X - . 39
'3 re [T.T. ".' j ( )

Using Eqs. (37)-(39) with Eqs. (28)-(31) the forces on all four atoms can be
resolved.

Integration Module
The second step in molecular dynamics is the numerical integration of
Newtlon's Second Law for each atom 1,

d®r,
:'—:;" a= (40)

where m is the mass of the i th particle, &, its acceleration, r, its position. and
t time. As pointed out above, the integration module depends on the type of
boundary condition in use, as this module also applies any position changes
necessary to keep the atoms in the unit cell (in the case of periodic boundaries)
or applies any restoring forces necessary (ip the case of soft walls) The integra-
tion algorithm we use in each of these modules is the same, a version of the Ver-
let algorithm as discussed by Beeman5” with further modifications by Ander-
sen % In our implementation, the vector difference in positions &, (¢ + 1) at tume

"
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step ¢ + 11s calculated from the previous difference 4,(t) and the force.
1 K .
(t+1) = 4it) + 5 —, 4.
dit+:) = dit)+ 5 — (¢2)
in which ¢ indicated the tume step t, and A 1s the size of the ime step Next the
new positions are calculated from the new difference in positions

nit+1) = (L) + 4{t+1). (42)

The improvement made by Andersen is that now only the diference in positior is
stored rather than the velocity Therefore there is less round off error as the
numbers being added in each stage of the calculation are closer in magntude
A crude forward difference velocity can easily be obtained by dmding the
difference in position by the tuime step. or, if desired, more accurate velocities
can be calculated 57

Beeman5? shows that higher order integration techriques tend not to be as
stable as the simple Verlet algorithm when larger time steps are used He alse
shows tha! the Verlet algomthm conserves energy as well as other integrators
tested in the large time step lmit The advantage of using this simple technique
with the array processor is that only a minimal amount of memory is set aside
for the storage of positions and the past time history of the system as compared
with higher order integration methods

Data Collection Modules

The data collection routine used for a particular application 1s often very
specialized and thus to analyze different properties different AP modules must
be written. However, MDOUT, the mechanism for buffering the data out to be the
host computer, is common to all routines once the property that is to collected
is calculated In many cases this property can be calculated in a vector functior
program

Various data collection modules exist for use with Newton An example is
the module that calculates and collects dipole moments and polarizabililies for
the system as a function of time, in order to compute by linear response theory
the infrared4!.42 and Raman434% spectra These modules operate in a very simi-
lar manner to the force evaluation modules, in that for the most part they use a
hst to index the atoms involved in the data calculation and the relevant parame-
ters {such as static and derivative dipole moments for molecules) MNDOUT saves
the data in two inlerna! buffers in main data memory and then DMA’'s the data out
under interrupt controi using a double buffering technique described in the next
section In general the actua! date is all that is saved from an individual Newton
run Normelly. trajectories are not saved in that it is easier and faster to do the
run over rather than saving and storing the details of the run

IV. RESULTS AND ANALYSIS

As pointed out in section II, the main advantage of an array processor is
high computational speed at a relatively low price In the way of benchmarks,
we have obtained the following results presented in Table 1| Column one shows
the various computers on which the benchmarks are taken Columns two, three,
and four compare the speed of the AP-120B for three d:fferent molecular mechan-
ics packages. The one presented in column two is a direct C translation of our
AP molecular dynamics package run on & VAX 11/780 and a VAX 11 /750 without float-
ing point acceleralors (FPA's) Column three compares our AP version against an
optimized Fortran version due to Hagler® and run on a vAX 117780 with a floating
point accelerator. Column four compares some speeds obtained for Konte Carlo
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calculations from Chester, et al 9

Table 1. Corparson o S.myletion Times on Varous Compaiers

Compuater Mo ec e Dynaw_cs Monte Ce-lo
(b€ @ 2 VP gn VAX (= Foan . FPA oo VAX

AP-1203 1 1 1

VAX 117780 80 H

VAX 117750 150

PDP 11 300

Prime 400 850

[BM 37¢ 168 1.5

€DC 7600 043
As cen be seen from the tabie our molecular mechanies package 15 approy.:
mately thirty-five times faster than a vax 11/78¢ with a floating point acceieratcr :
and an opumized Fortran compiler Thus e simulation that can be run in & weex 4

and e half on the AP-1208 would take a year on & VAX even if the VAX were totally
dedicated to that calculation 4

Althoyugh the AF-1203 has preven to be a very fast and economica machurn:
for molecular mecharics and allows us to simulate systems which otherwise
would not be feasible. it 1s far from 1deal One concern is the word length of the
float:ng point numbers For example for many quanturn mechanical calculz-
tions 32 bit floating point representations are inadequate whereas 84 bil prec -
sion suffices The gquestion arises as to the adequacy of the 38 bits of the AP a-.2
if particular sections of algorithms can be painstakingly coded irn the forcez
double precision possible orn the AP to give adequate results Wrule most mclec-
ular mechanics 1s certainly adequately handled with 38 bits, one might do the
integration module for molecular dynamics in double prec:sion and lezve the {
more computationally intensive force evaluation in single precision.

Another feature missing in the AP-1203 is the ability to DMa data oul of ma:n
data memory to the host processor preserving the full 3B bits of precision Thus
impacts the ability to do three things The first is that we would hike to be atle
to rap:dly store intermediate results on disk so that the runs could be stopped
anc started at a later time without loss of precision in the data A rapid method
of wniting such intermediate files would also facilitate periodic file dumps for
restart capability if the host systern were to crash The second impacted area is
the ability to rapidly load and retrieve integers packed into floating point words
The amount of time spent in loading the AP through the wvirtual front panel! with
long packed lists, for example which would be necessary if neighbor lists were
used could be extraordinanly burdensome Thirdly, this limitation interferes ’

with making the AP & rapidly sharabie machine rather than an exclus:ve use dev-
ice as it is now To make it truly sharable all of the machine’'s memories and
internal registers would have te be rapid!y Dia’ed out to disk {swapped) and this
is not possible with the present architecture.

In future versions of array processors we would also like to see a separate
integer memory that could be accessed faster . lacking this ap instruction
shouid be added that would allow the access of all the bits of an integer packed
into a main data word Since molecular dynamics is not usually memory bound
and most code is parallel for each of the three coordinate axes, more than one
fioating point adder and multiplier might be useful In this way calculations for
each of the three axes could be carried out ip parallel rather than serially. The
serial approach, however, is often convenient, especially given the fact that the
multiplier is a three stage operation, but since the adder is only two stages it
often disrupts any attempts to build the physical symmetry of the problem into
the code. If such improvements were to be incorporated, speed enhiancements
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by util:zing fast maln data memory could more easiy be realized

Another obwvicus musfeature is the absence of integer multiplication which
makes the addressing of multud:mensional arrays diflicult Additionz) memery
address reg:sters so that more than one item could be fetched from different
banks of main data memory in the same wnstruction would replace the necess.ty
of using the writable table memory for selective data storage. thus allowing al!
data to be accessible through the DM channel freeing table memory for seldom
changed constants

There is current'y available from Fiozt:ng Point Systems a 64 b:l array pro-
cessor. known as the FPs-164 whuch solves the problem of numerical accuracy. at
least for most problems of chemical interest )t 1s, however, ns faster {in fect
somewhat slower) than the A®-1203 and qute expensive It alsc differs in thet
progrem memory and data memory occupy the same space, and thus the For-
tran complier approeach. although no faster in speed. is more feasible due to the
abundance of memory now available for its bulky code Thus offers some advan-
tages. fo- example. for quantum applications as large previously developed pro-
gram packages can be run in the AP using its Fortran compiler with only the
inner loops being optimuzed as hand coded AP routines Studies of usual quan-
tumn packages indicate thet only 500 to D00 lLnes of code take up most of tke
execution time 80

Another improvement that wou!d facilitate the use of array processors for
computational chemists. 1s a good higher level language compiler. We would
suggest the language® C For many reasons Cis more appropriate than Fortran
for cormpiling into efficient A»-1203 assembly language For example C allows the
use o! pointers te arrays as an alternztive to subscripts Incrementing and
decrernenting a pownter and stepping along memory can be much more
efliciently handled in AP-1203 assembly language than adding a subscript offset
{which may need to be decremented if it does not start at D, such as is the case
with Fortran) to the array base address. In addition C allows the declaration of
variables as registers, thus allowing the programmer to warn the compiler that a
particular piece of data needs to be kep! in date pad registers rather than writ-
ten and reread from memory We are optimistic that a good C compiler can be
written that will produce AP-1208 assembly language code good enough to
obsolete the desire to program in assembly language except for extremely criti-
cal loops which are executed too many times to tolerate any inefliciencies. The
only such loop of this type in our molecular dynamics code is the intermolecular
force evaluation, which is less than ten percent of the total AP code.

The actual generation of such a compiler is a difficult task Since the AP 1s
not of the von Neumann architecture,® there is little expertise in this area of
software design Ken Wilson®! has suggested a Monte Carlo method of code gen-
eration, whereby given certain rules and corstiraints the AP itsell would try to
oplimize its generated assembly code using & Wonte Carlo technique, varying
the code while preserving its logical outcome 1n this case code, not particles,
would be randomly moved with the overall length of the code being minimized
His atternpt at imp'ementing such an optimizer also starts with C language
source code.

All of the support code for Newton run on the host computer is written in C.
This has allowed us to maintain & single set of source code files which are shared
by many programmers and used to sirnulate systemns dramatically different in
nature C is much more structured than Fortiran and self documenting in maay
cases, as it has superior readability. It discourages the use of "go to" state-
ments which have been described as & marvelous way to write impessibleto-
undersiand programs Although it is a higher level language. it allows the

.. . CEEPNPRRLY, S
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programmer the freedom and degrees of mampulation of data found in mcst
typical assembly languages It is portable since there is no bult-in 170 and sve-
tern dependencies are only in word lengths Although C 1s very closely tied tc
the UNX operating system. there are C compilers running on VAX's under VU< o
[BM 360's, on and various other machines There 1s a portable C compuer that cen
be bought up on most machines with just a few months of work Tbe C compiler
itself 1s writtenin C.

The advantages of the UNX operating system® 8 ghould not be cverloske 3
The reason UNX and C are so related is that all of the UNX utilities and cver &0
percent of the actual UNX kernel are writtenn in C  Thus the UNX operating sy
tern itself 1s portable 1t is becorung a standard operating system for & w.ic
variety of computers, so that we can (and have) moved both the UNX operatirs
system and Newton from one type of processor to another Ns debuzging ed:'-
ing. and friendliness to the user are superior, enhancing prograrnmer prod.c-
tinty and the ease of making and debuggirg changes to Newton

The development of Newton would have been very d:ficult wmithout the '8
operating system environment The operating system kernel arnd device ériner:
for UNX are written in C, and thus are easily changed We have hand tailored the
AR 1203 driver to meet our needs. It allows the host computer and the A™1203 to
operate asynchronously, coordinating efforts via interrupts As the A®1203 flis
up its data buffers it sends an wnterrupt to the host which causes the host tc
empty the buffer from AP-1203 memory to d:sk while the A™1202 continues the cal-
culation, filling up a second bufler This means that there is nc lost computat:cn
tume by the AP-1203 waiting for the host to empty the buffer and restart the cal-
culation Furthermore this procedure allows the host program to be inact:vated
(and even swapped) without having to loop just to check on the state of the AP
This change has increased our data throughput by over a factor of ten and aliows
the use of the AP-1203 on & timesharing system with minirzal impact to other
users.

UNX. 8 third generation operating system, is easy to learn Our research
group consists entirely of chemists, most of whom have little previous training in
computer science and most have had little difficulty in picking up the necessary
akills to use the operating system on a sophisticated level. Since most have lit-
tle or no experience in traditional computer languages such as Fortran. it is
interesting to note that they can begin writing complicated C programs in much
less time that it would have taken to gain the equivalent abilities in Fortran.

V. CONCLUSION

As compulational chemists search for more computer power, others will
surely turn to array processors as we have as they provide at the moment by
far the most computational power per hardware dollar, particularly since the
cost is low enough that they can be dedicated full-time to & particular task or
class of tasks While running on a supercomputer such as a Cray-1 will result in
more computation per hour of processor use, it is unlikely to result in as much
computation per year. The reason is that the equivalent to 24 hours per day of
dedicated AP-120B time is, for example 3 24.25.% two to eight hours per day of
Cray-1 time, a usage rate which few, if any, research groups are able to afford
over the long run Even if a group’'s budget were large enough to annually pur
chase this much supercomputer time, for the same cost several array proces-
sors could be purchased each year.

While array processor use is very appealing and the reward can be high, we

believe our effort in bringing up a genera! purpose program package for molecu-
lar mechanics has also uncovered many of the pitfalls. That we can run in ten




days problems which would requre a year of dedicated VAX 11/780 ime allows uc
to handle problems in solution reaction and biomolecular dynamics which wouid
not otherwise be feasible However. the price we have paid i1s substanlial Wn!«
molecular mecharucs is straightforward in nature, it has taken over six mar:-
years to develop eflicient AP code to carry out the task

An important feature of our code 15 1ts modularity Since reprogramrng is
expensive. we have attempted to isolate the individual aspects of the calcuwation
into individual AP modules The generality of the program package allows us tc
simulate a wide variety of systems using essentially the same code Past work
Includes the calculation from molecular dynamics and hnear response theory of
infrared 4! 42 Raman*345 electroruc4® 47 spectra in the gas phase and 1o Lga.d
solution ln additicn. we have computed the dynamics and rotationz’ and vibre:
tional! spectra of alkanes (such as methane. ethane, cyclohexane and their solu-
tions). water (in both the gas and liqud phase as well as various N-mmers of water
molecules), and ions and microcrystals dissolved in waler. We have computed
the transient Raman and electronic absorption spectra during the course of a
chemical reaction by computing the dynarmics for the photod:ssociation of
lodine in a solution of hquid xenon 4447 Other applications involve the computa-
tion from molecular dynamics of thermodynamic quantities and their quantum
correction through spectral analysis of alomic velocity ime histories 48 Newton
also incorporates a general set o! protein potentials for biomolecules and 1s
currently being applied to the molecular mechanics of polypeptides and merm-
branes in collaboration with A Hagler.
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APPENDIX: CHAIN RULE FOR GRADIENTS
In the calculation and decomposition of forces it is often conven:ent to
switch from Cartesian to internal coordinate systems. This presents difficulties
as the gradients must also undergo this transformation In this appendix we
present formula for converting gredients in one frame of reference to another.
The gradient with respect to the Carlesian coordinates of particle 17,
r. = 2,1+ y,J+ &K is the vector operator given by
_ 20 2 0 ;
'.-Toz‘+]ay‘+iaz‘. (AY)
The force on the 1th particle F, can be expressed using the operator in Eq (A1)
as

F,L = -V V, (A2)

where V is the potential epergy. Commonly, however, the potential V is more
easily expressed as & function of some internal coordinate r,, where the internal
coordinate is a function of the Cartesian coordinates, r, = r,(r;). We would
therefore like to convert the gradient in Eq (A2) into a gradient with respect to
the internal coordinate r,. Using the chain rule, the following terms result

_| oy bz, ov 8v. 8y Oz,
"V('.)_[o& 0z * Oy Oz, * 0z, 0z ]t

. [ov 8z, B8V Bv. . BV Or, Ii

+ +

o0z, Oy oy, Ow Oz, Oy

~. . = o g At e
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(A3)

bz, Bz, ' by, 0z, ' 0z, O,
Equation (A3) can be written in a more compact form as
V,Vir,) = Vo Virg) Vg (A)

where ¥, V(r,) is a vector with components

[ov 0z, 8V Oy . v Oz ]E

_lev av v .
VW¥ln) = 1327 By e (A%)
and V,r, is a tensor® with components
8z, 8z, Bz, )
0, Oy, bz
- {8% OYa By
Vr, = 8z, 8y, 08z, |’ (A€)
82, Bz, 0z,
8z, 9y, 08z, |

Thus by Eqs. (AS) and (A6). the expression in Eq. (A4) is actually the vector
matrix product8®

9z, 0z, 8z,
0z; 08y, 0z
_{8av a8v 8V 8ya Oy, By, 5
VeV Vre = o By, B2, | (B ow o, (A7)
0z, 0z, 0z,
0z, Oy, 0z |

which when expanded gives Eq. (A3).

We will now apply this technique to the examples presented in the text. In
the case of the three body module, where the internal coordinate vectors r, and
¥, as in Egs. (8) and (7) of the text, respectively, are given by the difference in
position of the i th particle with respect to the j th particle, viz.,

re =1, -1 (AB)
it can be easily seen by evaluating the partial derivatives in Eq (A8) using Eq
(AB) that the relevant tensors are given by
Vr, =1 (A9)
',‘!'. = -1, (A:‘O)
where Iis the unit tensor.
However, in the four body force decomposition the internal coordinates r,

and ry, are vector cross products of the bond vectors ry, rp. and ry, viz.,
o = 0Xrp = [!h'z“l!la- €,Zp-I,2p, 31!/2‘14132] . (A1)

For this case we must evaluate the partial derivatives in Eq. (A8) using Eq. (A1)
except with respect to the Cartesian vector r, instead of r;. This gives for the
gradient expressed in Eq (34) of the text the following result

Vicosp = [ o T ™S

0 L]
-X2 0

0 =z -y
Ocosy Ocosp Bcosp e, (A:2)
Ve
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When Eq (A12) 15 expanded it becomes obwious that it is equvalent to

Vicosy = rp X ¥, cos¢ . (AL3)

Sumilarly, the followmng results can be obtained for the other gradients
Vecosy = Vg cosg Xr, + W,cosg X ry (A:4)
Vacosg = rz X ¥ cosg . (A:5)
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